Search results for "shotgun proteomics"
showing 9 items of 9 documents
Organelle protein changes in arbuscular mycorrhizal Medicago truncatula roots as deciphered by subcellular proteomics
2019
Prod 2020-8c SPE IPM INRA UB CNRS; The roots of most land plants can enter a symbiotic relationship with arbuscular mycorrhizal (AM) soil‐borne fungi belonging to the phylum Glomeromycota, which improves the mineral nutrition of the host plant. The fungus enters the root through the epidermis and grows into the cortex where it differentiates into a highly branched hyphal structure called the arbuscule. The role of the plant membrane system as the agent for cellular morphogenesis and signal/nutrient exchanges is especially accentuated during AM endosymbiosis. Notably, fungal hyphae are always surrounded by the host membrane, which is referred to as the perifungal membrane around intracellula…
A Shotgun Proteomics Approach Reveals a New Toxic Role for Alzheimer's Disease Aβ Peptide: Spliceosome Impairment.
2017
Proteomic changes have been described in many neurodegenerative diseases, including Alzheimer's disease (AD). However, the early events in the onset of the pathology are yet to be fully elucidated. A cell model system in which LAN5 neuroblastoma cells were incubated for a short time with a recombinant form of Aβ42 was utilized. Proteins extracted from these cells were subjected to shotgun proteomics analysis by LTQ-Orbitrap-MS followed by label-free quantitation. By bioinformatics tools we found that the most significant of those found to be up-regulated were related to cytoskeletal dynamics (Rho related) and membrane-related processes. The most significant of the down-regulated proteins we…
SILAC labeling coupled to shotgun proteomics analysis of membrane proteins of liver stem/hepatocyte allows to candidate the inhibition of TGF-beta pa…
2014
Background: Despite extensive research on hepatic cells precursors and their differentiated states, much remains to be learned about the mechanism underlying the self-renewal and differentiation.Results: We apply the SILAC (stable isotope labeling by amino acids in cell culture) approach to quantitatively compare the membrane proteome of the resident liver stem cells (RLSCs) and their progeny spontaneously differentiated into epithelial/hepatocyte (RLSCdH). By means of nanoLC-MALDI-TOF/TOF approach, we identified and quantified 248 membrane proteins and 57 of them were found modulated during hepatocyte differentiation. Functional clustering of differentially expressed proteins by Ingenuity …
Shotgun Proteomics of Isolated Urinary Extracellular Vesicles for Investigating Respiratory Impedance in Healthy Preschoolers
2021
Urine proteomic applications in children suggested their potential in discriminating between healthy subjects from those with respiratory diseases. The aim of the current study was to combine protein fractionation, by urinary extracellular vesicle isolation, and proteomics analysis in order to establish whether different patterns of respiratory impedance in healthy preschoolers can be characterized from a protein fingerprint. Twenty-one 3–5-yr-old healthy children, representative of 66 recruited subjects, were selected: 12 late preterm (LP) and 9 full-term (T) born. Children underwent measurement of respiratory impedance through Forced Oscillation Technique (FOT) and no significant differen…
Data-independent acquisition strategies for quantitative proteomics
2013
In shotgun proteomics, data-dependent precursor acquisition (DDA) is widely used to profile protein components in complex samples. Although very popular, there are some inherent limitations to the DDA approach, such as irreproducible precursor ion selection, under-sampling and long instrument cycle times. Unbiased ‘data-independent acquisition’ (DIA) strategies try to overcome those limitations. In MSE, which is supported by Waters Q-TOF instrument platforms, such as the Synapt G2-S, a wide band pass filter is used for precursor selection. During acquisition, alternating MS scans are collected at low and high collision energy (CE), providing precursor and fragment ion information, respectiv…
An Organometallic Gold(I) Bis‐N‐Heterocyclic Carbene Complex with Multimodal Activity in Ovarian Cancer Cells
2020
Abstract The organometallic AuI bis‐N‐heterocyclic carbene complex [Au(9‐methylcaffeine‐8‐ylidene)2]+ (AuTMX2) was previously shown to selectively and potently stabilise telomeric DNA G‐quadruplex (G4) structures. This study sheds light on the molecular reactivity and mode of action of AuTMX2 in the cellular context using mass spectrometry‐based methods, including shotgun proteomics in A2780 ovarian cancer cells. In contrast to other metal‐based anticancer agents, this organogold compound is less prone to form coordinative bonds with biological nucleophiles and is expected to exert its drug effects mainly by non‐covalent interactions. Global protein expression changes of treated cancer cell…
Spanish human proteome project: Dissection of chromosome 16
2013
11 páginas, 6 figuras.-- et al.
How does sulfur deficiency modulate pea response to water stress? Impact on early developing and mature seeds
2018
National audience; Pea (Pisum sativum L.) produces seeds rich in proteins but yield and quality remain unstable across years due to various stresses. Sulfur (S) deficiency and water stress are two abiotic stresses that interact in the current context of climate change and low-input practices, and recent studies suggest an important role for sulfate transport and metabolism in the plant response to water stress. To investigate the interplay between sulfur nutrition and the water stress response, sulfate-deprived pea plants were subjected to a 9-days period of water stress during the early reproductive phase. While water stress did not impact seed yield, sulfur deficiency alone or combined wi…
Changes in the pea seed proteome in response to drought combined with sulfur deficiency
2017
EABAPGEAPSI DOCT INRA; Pea (Pisum sativum L.) produces seeds rich in proteins, but seed yield and quality remain unstable across years due to abiotic stresses occurring during the reproductive period. Drought and sulfur deficiency are two abiotic stresses that interact in the current context of climate change and lowinput practices, and recent studies suggest a role of sulfate transport and metabolism in the plant response to drought (Ernst et al., 2010; Chan et al., 2013; Gallardo et al., 2014; Ahmad et al., 2016). In this study, we investigated the impact of sulfur deficiency combined with drought on the pea seed proteome. Pea plants were subjected to sulfur-deficiency two weeks after sow…